Spicy Nanogoo

Nano Car (Photo by Y. Shirai/Rice University)Nanopaprika could be the key ingredient for spicing up the nanoscience and nanotechnologies communities. Site editor Andras Paszternak asked me to join just before the scientific social networking site passed the hot point of 500 members. Whether or not that nice round figure really is key to online science remains to be seen but there is certainly a buzz about the place.

I had rather hoped to kick off a lively debate on nanogoo and the media hype and parallel scare stories that have emerged since K Eric Drexler’s first proclamations about nanobots following on from Feynman’s famous room at the bottom lecture.

We’ve all read the grey goo headlines but we’ve also seen the hype regarding what nano has to offer. I often tell people it’s nothing special, just stuff that happens to be a few billionths of a metre in scale. If it’s not grey goo and it’s not the Drexlerian promise of a decade since, then where is modern nanoscience and when will it truly beecome nanotechnology?

I also asked the same question, in time-honoured fashion, of my LinkedIn contacts and have summarised responses here.

Liam Sutton, a Business Research Fellow at the University of Sheffield’s Polymer Centre and Technical Consultant at FaraPack Polymers had this to say: “Well, ‘nanoscience’ is such a broad area. After all, the term encompasses (as far as I understand it) anything physical with a characteristic length scale in the order of nanometres. So there are unpleasant stories to tell, like the discovery of penetration of the blood-brain barrier in rats by diesel smoke particles and, equally, there are billion-dollar nanotechnologies already out there like hard disk drives based on the giant magnetoresistance of synthetic nanoparticles.”

Suttons adds that the Sheffield answer to this sort of question is to direct people towards the Soft Machines blog of Richard Jones, who is Senior Strategic Advisor for Nanotechnology for the UK’s Engineering and Physical Sciences Research Council. “It’s a very well written and authoritative source on the place and direction of nanoscience and technology,” Sutton says.

Tim Harper, a (nano)Technologies Entrepreneur, says that, “Most of the hype seems to have shifted to Cleanteach (along with most of the hypers) so the picture is becoming a lot clearer. The technology is now emerging in a number of areas although the majority of ‘nano’ is still nanoscience.” He points readers to a couple of white papers dealing with this on the Cientifica website. Harper is VP Business Development at PlayGen, Contributing Editor at The Real Nanotech Investor, and an Editorial Board member on NANO, published by World Scientific.

Philippe Bradley (no relation), an Oxford Uni student and founder of CivSpark.com, which is currently in development said: “Nanobiotechnology seems to be a very exciting field at the moment – because, behind the opaque name, it’s basically the science of beating nature at its own game. The body is full of amazing machines, nanoscience seeks to modify or emulate them – or create completely new machines that perform similar functions.”

“Nanotechnology, as far as theory goes for technology in the nano domain, exists very much today,” adds Santanu Ganguly, at Network Engineer at Swisscom. He points to quantum dots, electron spin dynamics, atomic clusters etc, which all lie under the nanoscience banner. “In terms of actually seeing the basic science become a ‘true’ technology, certain challenges still remain,” he adds, “most of which has to do with quantum interactions. The most promising part so far, from the point of view of applications and control over quantum interactions, seems to be quantum optics and manipulation of DNA.”

You can read other responses and follow additional resources via the LinkedIn answers page. What are your thoughts on nano hype and nano fears? Are we set to drown in nanogoo at some point in the future or will nano save the world? Surely, with all this paprika around it’s time for a pep talk…

Arty with a Capital F and the Myth of Absinthe

ThujoneI’ve got a bottle of absinthe, at the back of a shelf in our store-cupboard. Unopened this bottle of green uber-liquor languishes untested awaiting an appropriate occasion when a drink containing 70 percent alcohol (140 proof) is required. It’ll probably be the day our cat dies…

Anyway, while my bottle languishes, new research suggests that the psychedelic mythology surrounding this exotic green aperitif and its purported mind-altering effects are due to nothing more than the high concentration of alcohol, plain, old EtOH like you find in wine, beer, and spirits.

The likes of van Gogh, Degas, Toulouse-Lautrec and Picasso quaffed large quantities of the stuff in the hope that its claimed hallucinogenic effects would enhance creativity. However, analysis of the contents of old bottles of the stuff by scientists in Europe and the US show that there were no psychotropic agents contained in the spiritual brew. Moreover, they found negligible quantities of thujone, a bicyclic compound with a three-membered ring that was widely believed responsible for absinthe’s effects. The results are detailed in the mid-May issue of the Journal of Agricultural and Food Chemistry.

The results brought to mind a high-school dance, when one particularly boastful and eccentric classmate (named Keith) was duped by some older boys into smoking common or garden tea leaves in the mistaken belief that they’d given him a spliff and then swaggered brazenly around the school hall under flashing disco lights claiming everything was, “Sooooo cooooooo, maaaaaan! I can almost picture van Gogh swigging the green grog, slicing off an ear and being endowed with a similar swaggering disposition (albeit in Dutch and with a large wad of surgical dressing pressed to the side of his head).

Absinthe took on legendary status in late 19th-Century Paris among bohemian artists and writers. They believed it expanded consciousness with psychedelic effects and called it the “Green Fairy” and the “Green Muse”.

The laboratory tests, unfortunately for Bohemians everywhere, found no compound other than ethanol that could explain absinthe’s effects nor its potent toxicity. “All things considered, nothing besides ethanol was found in the pre-ban absinthe samples that was able to explain the syndrome of absinthism,’ the researchers say. And, there I was hoping for a good drowning of sorrows when our cat has used him his full nonet of lives.

Incidents and Accidents

A friend of mine who worked in a biotech lab in Europe suffered a bout of what she thought was hayfever this year…snuffling and runny nose, itchy and sore eyes, the usual thing…except this was in February! She took a few days sick leave – it was that bad – and the symptoms subsided. Until she went back to work, where she started up again her earlier experiment – enzymatic chemical synthesis.

The devastating result was far worse than the snuffles she had suffered before his sick leave – her neck and face went bright scarlet, she started shaking and collapsed gasping for air. Anaphylactic shock was the diagnosis. She had to leave her job although the lab in question has implemented very strict protein-powder handling control systems, it’s the kind of accident that is almost impossible to predict and potentially more common than ever.

There are more unusual accidents. In December 1999, Emory University in Atlanta paid out $66,400 in fines and changed its procedures following the death two years earlier of primate researcher Elizabeth Griffin who contracted herpes B after being hit in the eye with fecal material, urine, or saliva while putting a rhesus monkey in a cage at the Yerkes Regional Primate Center.

A small-scale lab accident may involve someone mixing something and getting an unexpected exothermic or explosive reaction. The results often reach the community by word of mouth and through a note in the literature. For instance, Toshi Nagata of the Institute for Molecular Science, Okazaki, Japan, recently reported an accident while following a literature procedure published ten years ago. The chemical preparation involved synthesising a brominated bipyridine (Can. J. Chem. [69, 1117 (1991)] but instead of using standard quantities Nagata’s team had scaled it down to a tenth. While they were purifying the product, the 100 ml reaction flask exploded violently injuring one of the team in the arm. Nagata suspects that the problem lay in the formation of a peroxide by-product that would have been less concentrated on a larger scale. Nagata, wrote to Chemical & Engineering News, the flagship journal of the American Chemical Society, saying, “I do not intend to blame the authors for not describing the danger, but all chemists should be aware that this procedure could be dangerous.”

Guidelines and regulations are all well and good but what about insidious threats like this? Such incidents beggar the question of how might they be predicted. Should there be stricter guidelines for the way procedures are described in the literature? If so, what might they be and how would they be applied?

In 1995, a seemingly small-scale spill of hydrofluoric acid killed a technician in Australia. He died from multi-organ failure two weeks after the incident. Several factors contributed to his unfortunate death, according to the official report – he was alone, wearing only rubber gloves and sleeve protectors but nothing covering his lap, He was working in a crowded fume hood. The lab had no emergency shower, nor any calcium gluconate gel antidote available. The lessons may be obvious. But, accidents happen to even the most experienced of scientists.

The slow death that befell Dartmouth chemist Karen Wetterhahn when she was exposed to a few drops of the highly toxic dimethylmercury in August 1996 took several months to kill her. Although Wetterhahn was wearing latex gloves this compound rapidly penetrated them and was absorbed through her skin. Ironically, she was at the time using dimethylmercury to examine the effects of toxic metals, such as chromium, on human cells. While, in October this year, Michal Wilgocki of the University of Wroclaw in Poland, a chemistry professor of thirty years experience, died after an explosion in his laboratory. Fire-fighters have suggested the accident may have happened while Wilgocki was drying unstable perchlorates.

Lab safety

So, who ensures that rules and regulations are adhered to in order to prevent accidents? Who makes sure the fume-cupboards and filters are up to a high enough standard and the reagent bottles are stored safely?

According to Jim Kaufman of the Laboratory Safety Institute (LSI), “There are three levels of responsibility. First is Management. Safety is their responsibility. Preventing accidents and injuries is their responsibility. If you manage others, you are responsible for their health and safety. You have to enforce the rules,” he explains. “Second is the Chemical Hygiene Officer and the lab’s safety committee. They are advisors and recommenders. Third is everyone. Everyone needs to be responsible for health and safety. Follow the rules, report accidents, injuries, and unsafe conditions.”

Organizations such as LSI – formerly the Laboratory Safety Workshop a not-for-profit center providing a focus for safety in science education, work, and our everyday lives. The LSI makes several assumptions about the level of knowledge of those “in the know”, they say “You know the hazards, you know the worst things that could happen, you know what to do and how to do it if they should happen, you know and use the prudent practices, protective facilities, and protective equipment needed to minimize the risks.” But, when the pressure is on, there can always be a proverbial chance for inadvertent roller skating down the stairs to wreck the best of intentions.

With the ubiquity of the Internet, every lab now can have instant online access to its health and safety rules and guidelines. The Biological Safety Policy of Washington State University at Pullman is a typical example of the materials freely available. One aspect of safety that is often ignored is that while personal protective equipment (PPE), such as eye protection, lab coats and fume hoods are essential, there is an alternative and that is to better design an experiment so that the hazards are controlled without resorting to PPE. If safer materials or processes are available or the whole experiment can be enclosed then that reduces risks.

There are numerous career opportunities in the field of safety. And quite a few glamorously named positions available, many of which are fairly synonymous job description minutiae aside. There are process/equipment safety engineers and technicians, laboratory safety officers, environmental protection agents, industrial (and chemical) hygienists, environmental, safety and health specialists, occupational health specialists and many others.

Most of these positions require at least a Bachelor’s degree in a technical subject, usually chemistry, biology, engineering, or physics, and it is, of course, possible to graduate in Industrial Hygiene or the related Occupational Safety too. One important aspect of many of these positions is that they usually require that the jobholder can physically wear appropriate personal protective equipment (PPE) and be capable of functioning while wearing respiratory protection. Which precludes some applicants on medical grounds.

An experienced industrial hygienist might work within an institute’s Occupational and Environmental Safety Office, for instance, and be responsible for coordinating support for the various laboratories, and ensuring employees, students, visitors, (patients, if they are working in a hospital), and the surrounding environment are protected.

Laboratory eye protection

Jason Worden has just completed his first year as a Laboratory Safety Technician at the University of Idaho, and has enjoyed the experience so far. “I work at a University in the Environmental Health & Safety Office,” he says, “My job includes surveying/inspecting labs on campus and testing and maintaining safety equipment. Another part of my job includes Radiation Safety duties as well as responding to Hazardous Material Emergencies and general office duties.”

There are important differences between the various job descriptions though, for instance, a safety engineer deals with protection of people and property from injury and damage investigating incidents. Whereas an industrial hygienist may be looking at protecting people from more insidious threats, injuries and illnesses that come about because of exposure to chemical agents or materials that may not be such an obvious hazard as a boiling vat of solvent outside a fume hood.

Jay Jamali is Environmental Health & Safety Director at Enviro Safetech Incorporated, a San Jose based company http://www.nullenvirosafetech.com. So, what routes are there into safety? “I have a client that went from researcher to safety specialist in a biotech company,’ says Jamali. “In other cases the safety staff have no background in biotech.” He adds that the position of “safety officer” is usually dependent on size of an organization or institute. “Smaller organizations assign safety to multiple site personnel,” he explains, “some doing chemical hygiene plan, same radiation safety, some bloodborne pathogen safety, some laser safety, some doing the personal protective equipment and some the lab safety.” On the other hand, outside contractors, such as Enviro Safetech, can take on the entire safety support operation on an as needed basis.

Bill Paletski of the Pennsylvania Technical Assistance Program (PENNTAP) points out that “flexibility and diversification is your key to beginning a career and improving it in the field of safety.” He suggests that without, belittling education, “Degree after Degree will not help, getting your feet wet is a good start.”

Many countries have regional safety departments that also inspect laboratories while every university should have a safety officer or section. Companies are bound by law to ensure the safety of their staff and visitors to their labs. Pay with a government agency, such as OSHA or EPA, is generally not as high as with a permanent position within an organization but they do offer good experience and training, according to Jamali. On the whole though pay is usually commensurate with experience, degrees and initials.

“The work is very addictive,” Jamali enthuses, “and very few leave the field after they get in because it gets under your skin.” He adds, that, “The key to success is to be a generalist, specialize in one of the three [main] fields and be an expert in at least two topics in your specialty.”

There are many specific problems that have not previously been such a concern in lab safety. Bio and chemical terrorism. Post 9-11, safety issues have been brought into sharp relief. Although most institutions are carrying on essentially as normal, security will ultimately impact on working practices in laboratories around the world. According to a spokesperson for Cornell University, “We’re still discussing all of this at various levels and there aren’t any clear answers. The one place that’s definitely involved is the College of Veterinary Medicine, where research on anthrax has been ongoing for years.”

Merle Schuh is a chemist at a small college – Davidson in North Carolina. He reckons in terms of the safety of faculty and students, “We have not instituted any new security measures or management procedures as a result of the increased threat of terrorism. We have always been conscious of safety considerations and lab and building security, and our present activities and procedures are deemed adequate,” he told me. “Since we are a small college, most students and faculty recognize each other, and any strangers to the chemistry building and other science buildings during daylight hours would generally be noticed.”

Working down a mine or on the high-seas, one might anticipate a real sense of danger when applying for the job, it might even be one of the thrills of the chase, but perhaps with the exception of those delving into active volcanoes or deep beneath the waves most researchers do not actively seek out danger.

Instructors at colleges and universities have a duty to emphasize and teach safety to their students. Proper education leads to awareness of safety issues and self motivation for their personal safety and the protection of others. “By the time science students graduate,” says Schuh, “ideally their conscientiousness about safety issues should be as well developed as their skills in doing laboratory work.” These days, not even the smallest or most ill-equipped lab has an excuse for failing to do its best to keep its researchers safe. But, still, in real life there is no safety net.

A version of this feature article by David Bradley first appeared in his careers column on BioMedNet.

Biomonitors

Autumnal grasses

Keeping a weather eye on atmospheric pollution is a large-scale, costly and time-consuming activity. However, there just happens to be a vast network of self-contained, self-powered units around the globe that can respond to the presence of toxins, radioactive species, atmospheric particulates and other materials in the environment and could be used to build up a local, national or international picture of environmental conditions – the world’s plants, mosses, and lichens.

In a forthcoming special issue of the International Journal of Environment and Pollution (2008, Volume 32, Issue 4), researchers from various fields explain how living organisms can be used to track the dispersal of atmospheric pollutants, particulates, and trace elements. They also explain how plants and other so-called biomonitors have been validated across the globe.

Writing in an editorial for the IJEP special issue chemist Borut SmodiÅ¡, a senior research associate at the Jožef Stefan Institute, in Ljubljana, Slovenia, explains how biomonitoring can be used in environments where a technological approach to monitoring is not only difficult and costly but may be impossible. “Biomonitoring allows continuous observation of an area with the help of bioindicators, an organism (or part of it) that reveals the presence of a substance in its surroundings with observable and measurable changes (e.g. accumulation of pollutants), which can be distinguished from the effects of natural stress.”

SmodiÅ¡ points to numerous other advantages of biomonitoring: “Simple and inexpensive sampling procedures allow a very large number of sites to be included in the same survey, permitting detailed geographical patterns to be drawn. Biomonitoring can be an effective tool for pollutant mapping and trend monitoring in real time and retrospective analysis,” he says.

While any organism might be used as a biomonitoring agent, Smodiš points out that mosses and lichens, which lack root systems, are dependent on surface absorption of nutrients. This means that they accumulate particulates and dissolved chemical species from their surroundings rather than from the soil and so could be more appropriate biomonitors for atmospheric pollutants.

In 1998, the International Atomic Energy Agency part of the United Nations, started a Coordinated Research Project on biomonitoring. Several papers in the special issue of IJEP detail methodologies, case studies and other aspects of various projects within this initiative and point to future avenues that might be explored.

Bristling beech leaves

In the paper “Atmospheric dispersion of pollutants in Sado estuary (Portugal) using biomonitors”, Maria do Carmo Freitas of the Instituto Tecnológico e Nuclear Reactor, in Sacavém, Portugal, and colleagues used instrumental neutron activation analysis (INAA) and proton-induced X-ray emission (PIXE) to investigate pollutant levels in epiphytic lichens. They found that temperature and humidity had a more prominent effect on pollutant accumulation than wind direction or rainfall levels, which could affect the interpretation of other biomonitoring results.

Ni Bangfa of the China Institute of Atomic Energy, Beijing, and colleagues in their paper “Study on air pollution in Beijing’s major industrial areas using multielements in biomonitors and NAA techniques” used NAA to analyze three types of plant leaves from Chinese white poplar, arborvitae, and pine needles. They found that northeast Beijing is a clean area while southwest is relatively polluted.

In “Biomonitoring in the forest zone of Ghana” B.J.B. Nyarko of the Ghana Atomic Energy Commission and colleagues studied the distribution of heavy metals in agricultural, industrial and mining areas in the first survey of its kind in Ghana using lichens as biomonitors. They found that the area around gold mining regions were most heavily polluted, with arsenic, antimony, and chromium while industrial sites had raised levels of aluminum, iron, and titanium. Farming regions were much less affected by heavy metal pollutants, as one might expect.

H.Th. Wolterbeek of the Delft University of Technology, Delft, the Netherlands in ” Large-scale biomonitoring of trace element air pollution: local variance, data comparability and its relationships to human health” used biomonitoring data to determine air concentrations and metal deposition and discussed how such studies might be used in the future to correlate pollution with human health issues. Other researchers including Bernd Markert of International Graduate School Zittau, Zittau, Germany, Eiliv Steinnes of the Norwegian University of Science and Technology, in Trondheim, and their respective teams also further validated the potential of biomonitoring approaches to pollution.

Mosses lichens

While biomonitoring techniques are improving rapidly and researchers are quickly validating results at the local level, Smodiš points out that there is no single species that could be used on the global scale. Moreover, different weather conditions around the globe mean that techniques are not necessarily comparable. With that in mind, environmental sensor manufacturers may rest assured that there is still a market for their instrumentation despite the best efforts of the mosses and lichens.

Taking the P (and the N)

SpirulinaUrine is a problem. Huge volumes are flushed, with fresh water, into the world’s sewage systems and then enormous volumes of yet more water are used to treat the waste along with solids. However, writing in a forthcoming issue of the Inderscience publication, International Journal of Biotechnology (2008, 10, 45-54), fellow journalists can email me if they want an advance copy of the paper) researchers in China and Russia describe how microbes could be used to convert liquid urine into a phosphorus and nitrogen rich biomass for use as feed, fertilizer and fuel.

Bioengineer Hong Liu of Beijing University of Aeronautics and Astronautics and colleagues Chenliang Yang, Ming Li, and Chengying Yu are working with Gurevich Yu, of the Russian Academy of Sciences, Siberian Branch, in Krasnoyarsk, to develop a more environmentally benign and potentially useful method for handling urine.

The researchers point out that the direct discharge of urine into lakes and rivers causes eutrophication because of the high levels of phosphorus and nitrogen. Treating human urine to make it safe to discharge into water is difficult and produces large amounts of waste by-product because urine is a complex mixture of compounds.

The researchers have now turned to the blue-green alga, Spirulina platensis, well-known, but controversial, as a health food supplement with claims of beneficial effects on cholesterol levels and blood pressure. Advocates also point to clinical evidence of benefits in treating malnourishment and anaemia in children with and without HIV, in protecting the heart from the toxic effects of the anticancer drug doxorubicin in chemotherapy, and even in preventing hay fever.

Spirulina platensis, now classified as Arthrospira (Spirulina) platensis (Nordstedt) Gomont does indeed contain several vitamins and minerals in large quantities, has a high protein content, and contains just 5-6% of good quality fat. Previous researchers have shown that this alga can grow on nitrogen-derived from urea (the nitrogen-containing component of urine) to release oxygen and produce solid biomass as it does so.

Liu and colleagues have now optimized the alkalinity of the fermentation mixture of Spirulina platensis to pH 9.5 as well as determined the best urine dilution ratio for most rapid growth. They warmed the brew to between 28 and 30 Celsius and bathed it in red and green light from an array of light-emitting diodes (LEDs). This stimulated metabolic activity. They were able to convert 99.99% of urine samples at the optimum dilution into solid biomass using Spirulina.

“Our future focus will be to make Spirulina platensis consume the nutrient component more quickly and to obtain more biomass,” the researchers say. They add that, “Spirulina platensis can be used as fertilizer, bait, and even a food and health product, is of great economic value.”

There could be a large market for urine-made Spirulina as an agricultural fertilizer or fish bait but perhaps this particular production method will not suit health food advocates. In fact, I’d go so far as to say they really are taking the P.

Research Blogging IconYang, C., Li, M., Yu, C., Yu, G., & Liu, H. (2008). Consumption of nitrogen and phosphorus in human urine by Spirulina platensis International Journal of Biotechnology, 10 (1) DOI: 10.1504/IJBT.2008.017987

Interview with Egon Willighagen

Egon Willighagen

Most of you who orbit the chemical blogosphere will be well aware of Egon Willighagen’s efforts in helping us build the chemical web. Willighagen is a post-doc at the Wageningen University & Research Center in the Netherlands and cites open source programming as his main hobby.

He runs a chemical blog and founded the all-encompassing Chemical Blogspace (elementally designated Cb). For this month’s Reactive Profile, I asked him about his work, the next big discovery, and about the highs and lows in running Cb.

You can read the complete interview in the April issue of Reactive Reports.

Also on offer in RR this month:

Super Insulators – Superconductors, materials with zero electrical resistance, have been known for decades, but their counterpoint materials, the superinsulators, could transform materials research and electronics design.

Gator Aid – Biochemist Mark Merchant of McNeese State University in Lake Charles, Louisiana, has investigated a range of proteins found in gator blood that might one day be used to fight serious infections.

Fake Bird Flu Drugs – International health organizations are lying in wait for the emergence of a form of avian influenza that could spread between people and lead to a global epidemic, killing millions.

More reactive chemistry…

Rebuilding the Periodic Table

Periodic Table BanThe Periodic Table of the elements is a fascinating icon of science. It is incredibly useful and has been exploited and sexploited too in the form of a periodic table of yoga and a sexy PT. It has also been hacked apart, cut and paste into different formats, created as illuminated wall cases, woodworked into furniture, spiralled, spherized, and generally rebuilt in almost every imaginable way ever since Mendeleev first dreamed of laying out his elemental cards according to the periodicity of elemental properties.

Now, in an effort to inspire chemists to reconsider the foundations of the periodic table, chemical philosopher Eric Scerri of the University of California, Los Angeles, is building a new way to classify the chemical elements one step at a time.

Writing in the latest issue of the Journal of Chemical Education (PDF 2008, 85, 585-589), Scerri explains how the periodic table initially arose from the discovery of atomic weight triads but he now suggests that chemists should recognize the fundamental importance of atomic number triads.

This sea change in elemental attitude might enhance the periodic table by classifying the elements at a fundamental level as basic substances. As such, he and his colleagues have developed a new version of the “left-step” periodic table, which looks very different from the conventional PT. In the new layout, with its step-like pattern actinides and lanthanides are no longer relegated to a standalone box, but form the first step of the PT.

Climbing right to the transition metals (Fe, Mn, Ir, Sg et al) on the next step and then to the non- and semi-metals, such as boron carbon, oxygen, silicon etc and finally a step in which the halogens (fluorine, chlorine…), noble gases (neon, xenon…), alkali metals (potassium, sodium…) and alkaline earth metals (beryllium, calcium…) form the final highest step on the right. Hydrogen tops the halogen column and helium crowns the noble gases rather than acting as the outer beacons as with the conventional layout. (Click the graphic for a clearer, full-size view).
left step periodic style=

“The left step table has been around for some time,” Scerri told me, “but I am modifying it to accommodate two atomic number triads which would otherwise be absent. They are He, Ne, Ar which ceases to exist as a triad in the usually encountered left-step table and H, F, Cl which does not exist either in the conventional medium-long form table or the usually encountered left-step table.”

In the grander scheme of things, whatever form the Periodic Table takes in the future matters not to those of us who sing, so we end with a song, the periodic table song from Tom Lehrer (who was 80 on April 9, 2008 and gets a mention in the Official Google Blog this week), known simply as The Elements.

Interview with Egon Willighagen

Check out my interview with chemical blogger Egon Willighagen, one of the new breed of chemists who are using the information tools of our age–the blogs, wikis, and online social media–to further their chemistry and benefit the wider chemical community.

By day, Willighagen is a postdoc at the Wageningen University & Research Center in the Netherlands. He participates in, amongst many other activities, Bioclipse, CDK, and Jmol as well as running the http://chem-bla-ics.blogspot.com blog. He also established the Chemical blogspace site, which collects data from dozens of scientific chemistry blogs and then does useful and interesting things with them.

Read the full interview in Reactive Profiles

Alchemy, Hydrogen Economics, Lead-free Crime

Toy gun crime

In my ChemWeb Alchemist column this week, German chemists have constructed nanoscopic balls from DNA, researchers in the UK have discovered natural antibiotics in Greek cheese that could prevent food poisoning, and Stateside, researchers have developed a low-pressure hydrogen storage material that might pave the way to a hydrogen economy (if we want it). I also report on ancient color in statues and relief as well as another chemical scare story. This award in this issue represents more than four decades of surface science and was presented to UCB’s Gabor Somorjai at the ACS meeting.

There’s cancer news over on SpectroscopyNOW this week with my report on findings suggesting a link between raised heavy metal levels and cancer, whether or not it is a cause or an effect of a change in metabolism in cancer is not yet known, but it represents a new avenue in research.

I also report briefly on a review of the state of the art in determining the absolute configuration, the definitive shape and structure of organic molecules using special add-ons for NMR spectroscopy and X-ray crystallography. Speaking of X-rays, in the XRD ezine, I report on the recent work from the Pyle group at Yale University who have unravelled some of the secrets of DNA’s message bearing cousin, RNA.

Finally, I got a chance to use a couple of my gun photos, which are heavily Photoshopped images of a toy gun, in a piece on forensic science and the problem of gathering hard evidence now that ammo has gone lead-free.

Colourful Scare Stories

Strawberries and creamThe British media had a feeding frenzy over artificial food colourings again last week, following pronouncements from the UK’s Food Standards Agency (FSA) urging manufacturers to voluntarily remove six additives from their products. The additives in question were linked in a Southampton University study funded by the FSA and published in The Lancet that linked them to hyperactivity in children.

Ingredients with bright names, such as Sunset yellow (E110), Quinoline yellow (E104), Carmoisine (E122), Allura red (E129), Tartrazine (E102), and Ponceau 4R (E124), are compounds that contain a doubly bonded N=N group sandwiched between two aromatic rings. The shuffling of electrons across the group allows them to absorb specific wavelengths of light and reflect others (depending on the chemistry of those rings) and so they have strong colouration. The FSA points out that these products do not exist in nature and give colour only artificially to a range of foods including tinned mushy peas, tinned strawberries, and fruit juice cordials (orange squash, for instance). Not being natural is not, of course, reason to ban an additive. The bright colouring, cochineal, for example, is entirely natural, but is also an apparent carcinogen.

It is true that the original tests that allowed these compounds to have their “E” safety rating were carried out two decades ago, but the European Food Safety Authority (EFSA) announced that the conclusions of The Lancet study were not strong enough nor adequately definitive to warrant a change to the safety labelling.

No parent wants to feed their child, non-nutritious products that could harm their health. But, if that’s the case why are the burger bars and other fast-food joints stuffed full every weekend and why are ready-meals and TV dinners still so enormously popular? More to the point, if parents are really so concerned about the food their children eat, why do we still see supermarket shelves stacked with tins and packets full to the brim with brightly coloured food? It is not as if this latest scare is anything new. Growing up in the 1970s and 1980s, I remember food colourings being talked about repeatedly, tantrums and tartrazine were linked way back when, not just in this one recent paper. We could so easily live without a blush of tinned strawberries and mushy peas that are a whiter shade of pale, surely?

Regardless, of whether these compounds really do cause behavioural problems in children, or whether such problems are due more to social deprivation, hard-pushed single parent families, and poverty is another matter. If as many column inches were set aside for promoting fresh air, exercise, and campaigning for more affordable seasonal fruit and vegetables as there are for every food scare that comes along, we’d all be a lot healthier and the market for artificial foods would simply dry up. Now, where’s whipped cream for my tinned strawberries?